"y^{\\prime \\prime}-y=\\underbrace{x e^{x\/ 2}}_{g(x)} \\text {. }"
The auxiliary equation is given by:
"\\begin{aligned}\n\n& D^{2}-1=0 \\\\\n\n&\\Rightarrow D^{2}=1 \\Rightarrow \\quad D=\\pm 1\n\n\\end{aligned}"
complementary equation:"\\quad y_{c}=c_{1} \\underbrace{e^{ x}}_{y_{1}}+c_{2} \\underbrace{e^{- x}}_{y_{2}}"
By variation of parameters,
Wronskian of the 2 functions is:
"W=\\left|\\begin{array}{ll}\n\ny_{1} & y_{2} \\\\\n\ny_{1}^{\\prime} & y_{2}^{\\prime}\n\n\\end{array}\\right|=\\left|\\begin{array}{ll}\n\ne^{x} & e^{-{x}} \\\\\n\n e^{x} & - e^{- x}\n\n\\end{array}\\right|"
"=-e^0-e^0\n\\\\=-1-1\n\\\\=-2"
Now, the particular solution is given by:
"\\begin{aligned}\n\ny_{p}(x) &=y_{1} \\int \\frac{y_{2} g(x)}{W} d x+y_{2} \\int \\frac{y_{1} g(x)}{W} d x . \\\\\n\n&=e^{{x}} \\int \\frac{e^{-{x}} \\cdot x e^{{x\/2}} d x}{-2}+e^{-{x}} \\int \\frac{e^{{x}} \\cdot x e^{x \/ 2}}{-2} d x \\\\\n\n\n\n\\end{aligned}"
"=-\\dfrac12 \\int xe^{x \/ 2} d x-\\dfrac12 \\int xe^{x \/ 2} d x \\\\\n=-\\dfrac12 \\int xe^{x \/ 2} d x\\\\"
On integrating by parts,
"y_p(x)=-\\dfrac12[4\\left(\\frac{1}{2}e^{\\frac{x}{2}}x-e^{\\frac{x}{2}}\\right)]\n\\\\=-2\\left(e^{\\frac{x}{2}}x-e^{\\frac{x}{2}}\\right)\n\\\\=2e^\\frac{x}{2}-2xe^\\frac{x}{2}"
"\\therefore" The general solution is given by:
"y=y_{c}+y_{p}\n\\\\=c_{1} e^{{x}}+c_{2} e^{-{x}}+2e^\\frac{x}{2}-2xe^\\frac{x}{2}"
Comments
Leave a comment