(cosx.cosy−cotx)dx−(sinxsiny)dy=0Let M=cosx.cosy−cotx and N=−sinxsinyLet F(x,y)=∫(−sinxsiny)dy⟹F(x,y)=sinxcosy+h(y)Differentiating and equating it to M, we havecosxcosy+h′(x)=cosxcosy−cotx⟹h′(x)=−cotxh(x)=−lnsinx∴F(x,y)=sinxcosy−lnsinxThe solution to the exact differential equation issinxcosy−lnsinx=c2.(3x2y−4y3+6)dx−(x3−6x2y2−1)dy=0Let M=3x2y−4y3+6 and N=x3−6x2y2−1Let F(x,y)=∫(x3−6x2y2−1)dy⟹F(x,y)=x3y−2x2y3−y+h(y)Differentiating and equating it to M, we have3x2y−4y3+h′(x)=3x2y−4y3+6⟹h′(x)=6h(x)=6x∴F(x,y)=x3y−2x2y3−y+6xThe solution to the exact differential equation isx3y−2x2y3−y+6x=cWhen x = 2, y=0, hence c = 12⟹x3y−2x2y3−y+6x=123.(2xy)dx−(y2+x2)dy=0Let M=2xy and N=y2+x2Let F(x,y)=∫(y2+x2)dy⟹F(x,y)=3y3+x2y+h(x)Differentiating and equating it to M, we have2xy+h′(x)=2xy⟹h′(x)=0h(x)=c∴F(x,y)=3y3+x2y+cThe solution to the exact differential equation is3y3+x2y+c=c⟹3y3+x2y+c=04.(xy2+y−x)dx−(x2y+x)dy=0Let M=xy2+y−x and N=x2y+xLet F(x,y)=∫(x2y+x)dy⟹F(x,y)=2x2y2+xy+h(x)Differentiating and equating it to M, we havexy2+y+h′(x)=xy2+y−x⟹h′(x)=−xh(x)=−2x2∴F(x,y)=x3y−2x2y3−y+6xThe solution to the exact differential equation is2x2y2+xy−2x2=cWhen x = 1, y=1, hence c = 1⟹2x2y2+xy−2x2=15.(1−xy−2)dx+(y2+x2−x3y−2)dyThe equation isn’t exact asMy=−x,Nx=2x−3x2yMy=Nx
Comments