Find the integral surface of (x-y)(p-q) = z(q+1) which contains the circle z=4; x2+y2=42.
(x-y)(p-q)=z(q+1)
xp-qx-yp+yq=z(q+1)
xp-qx-yp+yq-zq=z
(x-y)p+(-x+y-z)q=z
Corresponding symmetric equation of the given system is;
"\\frac{dx}{x-y}=\\frac{dy}{-x+y-z}=\\frac{dz}{z}"
We need two independent first integral
Adding numerator and denominator we get,
"\\frac{dx+dy+dz}{x-y-x+y-z+z}=\\frac{d(x+y+z)}{0}"
Which means d(x+y+z)=0 so,
1st independent integral is f1=x+y+z
Next:
"\\frac{dx-dy+dz}{x-y+x-y+z+z}=\\frac{dz}{z}"
"\\frac{d(x-y+z)}{x-y+z}=\\frac{2dz}{z}"
"d(\\frac{ln|x-y+z|}{z^{2}})=0"
and we get 2nd independent integral
f2="\\frac{x-y+z}{z^{2}}"
Taking t as a parameter and the given equation of x2+y2=42,z=4. Can be put in parametric form as;
x=t
y=4+/-t
z=4
We then rewrite f1 and f2 as:
f1=t+4+t+4(taking positive value of t in y)
f1=2t+8
t="\\frac{f_1-8}{2}"
f2="\\frac{t-(4+t)+4}{4^{2}}"
f2="\\frac{2t}{4^{2}}"
Replace t in f2
f2="\\frac{f_1-8}{16}"
f1-8-16f2=0
Putting the values of f1 and f2 the desired integral surface is;
x+y+z-16("\\frac{x-y+z}{z^{2}})" -8=0
Comments
Leave a comment