"({x^3} + 2)y = x\\left( {{y^4} + 3} \\right)y' \\Rightarrow ({x^3} + 2)y = x\\left( {{y^4} + 3} \\right)\\frac{{dy}}{{dx}} \\Rightarrow \\frac{{{x^3} + 2}}{x}dx = \\frac{{{y^4} + 3}}{y}dy \\Rightarrow \\left( {{y^3} + \\frac{3}{y}} \\right)dy = \\left( {{x^2} + \\frac{2}{x}} \\right)dx \\Rightarrow \\frac{{{y^4}}}{4} + 3\\ln |y| = \\frac{{{x^3}}}{3} + 2\\ln |x| + C"
Answer: "\\frac{{{y^4}}}{4} + 3\\ln |y| - \\frac{{{x^3}}}{3} - 2\\ln |x| = C"
Comments
Leave a comment