Question #236081

Solve the following bvp by eigenfunction expansion method.

y''+2y=2-4x, y(0)=0, y(1)+y'(1)=0


1
Expert's answer
2021-09-13T16:47:02-0400

Characteristics equation:

k2+2=0roots arek1,2=±2k^2+2=0\\roots\space are\\ k_{1,2}=\pm\sqrt{2}\\

Basic solutions:

y2(x)=cos(2x)y1(x)=sin(2x)y_2(x)=cos(\sqrt{2}\cdot x)\\ y_1(x)=sin(\sqrt{2}\cdot x)\\

General solution of homogeneous part:

yh(x,C1,C2)=C1cos(2x)+C2sin(2x);y_h(x,C_1,C_2)=C_1\cdot cos(\sqrt{2}\cdot x)+ C_2\cdot sin(\sqrt{2}\cdot x);

Let find partial solution in form:

y1=a+bxy_1=a+b\cdot x

For finding a,b substitute it in diff equation:

y1+2y1=2a+2bx=24xy_1''+2\cdot y_1=2a+2bx=2-4x

We take a,b values:

a=1, b=-2;

Partial solution has the form:

y1(x)=12xy_1(x)=1-2\cdot x

The overall solution as a whole

ynh(x,C1,C2)=C1cos(2x)+C2sin(2x)+12xy_{nh}(x,C_1,C_2)=C_1\cdot cos(\sqrt{2}\cdot x)+ C_2\cdot sin(\sqrt{2}\cdot x)+1-2\cdot x

Now we apply boundary condition y(0)=0 and have:

0=C1+1C_1+1

From it we have C1=1C_1=-1

And therefore

y(x,C2)=cos(2x)+C2sin(2x)+12xy(x,C_2)= -cos(\sqrt{2}\cdot x)+ C_2\cdot sin(\sqrt{2}\cdot x)+1-2\cdot x

Further we use second boundary condition:

y(1)+y(1)=cos(2)+C2sin(2)1+2sin(2)+2C2cos(2)2=0y(1)+y'(1)=-cos(\sqrt 2)+C_2\cdot sin(\sqrt 2)-1+\sqrt 2\cdot \\ sin(\sqrt 2)+\sqrt 2\cdot C_2\cdot cos(\sqrt 2)-2=0

This is an equation with respect to C2

Solving it we have:

C2=3+cos(2)2sin(2)sin(2)+2cos(2)C_2=\frac{3+cos(\sqrt 2)-\sqrt 2\cdot sin(\sqrt 2)}{sin(\sqrt 2)+\sqrt 2\cdot cos(\sqrt 2)}

And finally

y(x,)=cos(2x)+(3+cos(2)+2sin(2)sin(2)+2cos(2))sin(2x)+12xy(x,)= -cos(\sqrt{2}\cdot x)+\\ \left( \frac{3+cos(\sqrt 2)+\sqrt 2\cdot sin(\sqrt 2)}{sin(\sqrt 2)+\sqrt 2\cdot cos(\sqrt 2)} \right )\cdot sin(\sqrt{2}\cdot x)+1-2\cdot x

Rhus we have sold bde problem.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS