Solve the following bvp by eigenfunction expansion method.
y''+2y=2-4x, y(0)=0, y(1)+y'(1)=0
Characteristics equation:
"k^2+2=0\\\\roots\\space are\\\\\nk_{1,2}=\\pm\\sqrt{2}\\\\"
Basic solutions:
"y_2(x)=cos(\\sqrt{2}\\cdot x)\\\\\ny_1(x)=sin(\\sqrt{2}\\cdot x)\\\\"
General solution of homogeneous part:
"y_h(x,C_1,C_2)=C_1\\cdot cos(\\sqrt{2}\\cdot x)+\nC_2\\cdot sin(\\sqrt{2}\\cdot x);"
Let find partial solution in form:
"y_1=a+b\\cdot x"
For finding a,b substitute it in diff equation:
"y_1''+2\\cdot y_1=2a+2bx=2-4x"
We take a,b values:
a=1, b=-2;
Partial solution has the form:
"y_1(x)=1-2\\cdot x"
The overall solution as a whole
"y_{nh}(x,C_1,C_2)=C_1\\cdot cos(\\sqrt{2}\\cdot x)+\n\nC_2\\cdot sin(\\sqrt{2}\\cdot x)+1-2\\cdot x"
Now we apply boundary condition y(0)=0 and have:
0="C_1+1"
From it we have "C_1=-1"
And therefore
"y(x,C_2)= -cos(\\sqrt{2}\\cdot x)+\n\nC_2\\cdot sin(\\sqrt{2}\\cdot x)+1-2\\cdot x"
Further we use second boundary condition:
"y(1)+y'(1)=-cos(\\sqrt 2)+C_2\\cdot sin(\\sqrt 2)-1+\\sqrt 2\\cdot \\\\\n\nsin(\\sqrt 2)+\\sqrt 2\\cdot C_2\\cdot cos(\\sqrt 2)-2=0"
This is an equation with respect to C2
Solving it we have:
"C_2=\\frac{3+cos(\\sqrt 2)-\\sqrt 2\\cdot sin(\\sqrt 2)}{sin(\\sqrt 2)+\\sqrt 2\\cdot cos(\\sqrt 2)}"
And finally
"y(x,)= -cos(\\sqrt{2}\\cdot x)+\\\\\n\\left( \\frac{3+cos(\\sqrt 2)+\\sqrt 2\\cdot sin(\\sqrt 2)}{sin(\\sqrt 2)+\\sqrt 2\\cdot cos(\\sqrt 2)} \\right )\\cdot sin(\\sqrt{2}\\cdot x)+1-2\\cdot x"
Rhus we have sold bde problem.
Comments
Leave a comment