uxx=4ut , 0<x<2 , t>0
u(0,t)=5, u(2,t)=10, t>0
u(x,0)=x, 0≤x≤2
Find the transient and steady-state temperature of the above bvp of heat equation
Solution
Let’s reduce boundary conditions to homogeneous u(x,t) = 5(1+x/2)+U(x,t)
For U(x,t) we obtain next problem
Uxx=4Ut , 0<x<2 , t>0
U(0,t)=0, U(2,t)=0, t>0
U(x,0)=x-5(1+x/2)=-5-3x/2, 0≤x≤2
Let U(x,t) = X(x)T(t)
Substitution into equation gives 4X(x)T’(t) = X’’(x)T(t) => 4T’(t)/T(t) = X’’(x)/ X(x)
Variables t and x are independent. So 4T’(t)/T(t) = X’’(x)/ X(x) = -k2
NOTE: variant k2 at the right side is impossible because equation X’’(x) - k2 X(x) = 0 with the given boundary conditions have only trivial solution.
Therefore we’ll get two ordinary differential equations
4T’(t) + k2 T(t)] = 0
X’’(x) + k2 X(x) = 0
From this equations T(t) = Aexp(-(k/2)2t), X(x) = Bsin(kx) + Ccos(kx) (A, B, C – arbitrary constants)
From boundary conditions U(0,t) = U(2,t) = 0, t > 0 => X(0) = X(2) = 0 and C = 0, X(x) = Bsin(2k) = 0 => k = ±πn/2 (n = 1,2, . . .).
Solution is
"U\\left(x,t\\right)=\\sum_{n=1}^{\\infty}A_ne^{-\\left(\\frac{\\pi n}{4}\\right)^2t}sin\\left(\\frac{\\pi nx}{2}\\right)"
From initial condition
"U\\left(x,0\\right)=\\sum_{n=1}^{\\infty}A_nsin\\left(\\frac{\\pi nx}{2}\\right)=-5-\\frac{3}{2}x"
Multiplying by sin(πmx/2) and integrating with bounds 0, 2
"A_n=\\int_{0}^{2}U\\left(x,0\\right)sin\\left(\\frac{\\pi nx}{2}\\right)dx=-\\int_{0}^{2}\\left(5+\\frac{3}{2}x\\right)sin\\left(\\frac{\\pi nx}{2}\\right)dx"
"A_n=\\left[\\frac{10}{\\pi\\ n}cos\\left(\\frac{\\pi nx}{2}\\right)-\\frac{6}{\\pi^2n^2}\\left(sin\\left(\\frac{\\pi nx}{2}\\right)-\\frac{\\pi nx}{2}cos\\left(\\frac{\\pi nx}{2}\\right)\\right)\\right]|_0^2"
"A_n=\\frac{10}{\\pi\\ n}\\left[cos\\left(\\pi n\\right)-1\\right]+\\frac{6}{\\pi\\ n}cos\\left(\\pi n\\right)=\\frac{10}{\\pi\\ n}\\ \\left[{(-1)}^n-1\\right]+\\frac{6}{\\pi\\ n}{(-1)}^n"
With this coefficients
"u\\left(x,t\\right)=5\\left(1+\\frac{x}{2}\\right)+\\sum_{n=1}^{\\infty}A_ne^{-\\left(\\frac{nn}{4}\\right)^2t}sin\\left(\\frac{\\pi nx}{2}\\right)"
It is transient temperature of the above bvp of heat equation. For t→∞ sum is equal to zero. Thus steady-state temperature of the above bvp of heat equation is ustat(x,t) = 5(1+x/2)
Comments
Leave a comment