The amount A in a fixed account at any time t is known to satisfy the the differential equation
d2A/dt2+tdA/dt+(t2-4)A=0. Express A as a series in powers of t.
"\\text{The given differential equation can be written as}\n\\\\A''+tA'+(t^2-4)A=0\n\\\\\\text{The entire set of real numbers are ordinary points, therefore we find the} \\\\\\text{series solution around the point 0}\n\\\\\\text{Let A = $\\sum_{n=0}^{\\infty}a_nt^n$, $A' = \\sum_{n=1}^{\\infty}na_nt^{n-1}$, $A''=\\sum^{\\infty}_{n=2}n(n-1)a_nt^{n-2}$}\n\\\\\\sum^{\\infty} _{n=2}n(n-1)a_nt^{n-2} + t\\sum^\\infty_{n=1}na_nt^{n-1} + \\sum^\\infty_{n=0}a_nt^n+\\sum^\\infty_{n=0}a_{n-2}t^n=0\n\\\\ \\text{Shifting index of summation, we have }\n\\\\\\sum^\\infty_{n=2}[(n+2)(n+1)a_{n+2}-4a_n+a_n+a_{n-2}]x^n=0\n\\\\\\implies a_{n+2}=\\frac{3a_n-a_{n-2}}{(n+2)(n+1)}\n\\\\\\text{Next we compute $a_{n+2}$ for n=0,1,2,3,$\\cdots$}\n\\\\a_2 = \\frac{a_0}{2}, a_3 = \\frac{a_1}{2}\n\\\\\\implies a_{n+2}= \\frac{3a_n-a_{n-2}}{(n+2)(n+1)}, n = 2,3,4,\\cdots\n\\\\a_4 = \\frac{a_0}{24}, a_5 = \\frac{a_1}{40}\n\\\\a_6= -\\frac{a_0}{80}\n\\\\=a_0+a_1t+\\frac{a_0}{2}t^2+\\frac{a_1}{2}t^3+\\frac{a_0}{24}t^4+\\frac{a_1}{40}t^5"
Comments
Leave a comment