Question #215395
Reduce the PDE uxx+xuyy
into a canonical form in the region
x<0.
1
Expert's answer
2021-07-16T08:00:14-0400

Comparing the given DE with

aUxx+2bUxy+cUyyaU_{xx} + 2bU_{xy} + cU_{yy}

We have that

a=1,b=0,c=xa = 1, b=0, c = x

But

dydx=b±b2aca\dfrac{dy}{dx} = \dfrac{b \pm \sqrt{b^2-ac}}{a}

In this case,

dydx=±x\dfrac{dy}{dx} = \pm \sqrt{-x}

This value will be a real number since we are considering the region x < 0

dy=±(x)12dxy=±2(x)323+cdy = \pm (-x)^\frac{1}{2}dx \\ y = \pm \dfrac{ 2(-x)^\frac{3}{2}}{3} + c

Set

ξ=3y2(x)32.......()\xi = 3y -2 (-x)^\frac{3}{2} ....... (*)

And

η=3y+2(x)32......()\eta = 3y + 2 (-x)^\frac{3}{2}...... (**)

ξx=3(x)12ηx=3(x)12\xi_x = -3(-x)^{\frac{1}{2}} \\ \eta_x = 3(-x)^{\frac{1}{2}}

ξy=3ηy=3\xi_y = 3 \\ \eta_y = 3

ξxx=32(x)12ηxx=32(x)12\xi_{xx} =- \frac{3}{2}(-x)^{-\frac{1}{2}} \\ \eta_{xx}= \frac{3}{2}(-x)^{-\frac{1}{2}}

ξyy=ηyy=0\xi_{yy}= \eta_{yy} = 0

So we have that

Ux=Uξξx+Uηηx=3(x)12Uξ+3(x)12UηU_x = U_{\xi} \xi_x + U_{\eta} \eta_{x} = -3(-x)^{\frac{1}{2}} U_{\xi} + 3(-x)^{\frac{1}{2}} U_{\eta}

Uxx=32(x)12Uξ9xUξξ+32(x)12Uη9xUηηU_{xx} = -\frac{3}{2}(-x)^{-\frac{1}{2}} U_{\xi}-9x U _{\xi \xi} + \frac{3}{2}(-x)^{-\frac{1}{2}} U_{\eta}-9x U _{\eta \eta}

Uy=Uξξy+Uηηy=3Uξ+3UηU_y = U_{\xi} \xi_y + U_{\eta} \eta_{y} = 3 U_{\xi} + 3 U_{\eta}

Uyy=9Uξξ+3UηηU_{yy} = 9U_{\xi \xi} + 3 U_{\eta \eta}

From (*) and (**), we have that

ηξ=4(x)32(4ηξ)13=(x)12....()\eta - \xi = 4 (-x)^{\frac{3}{2}} \\ (\dfrac{4}{\eta - \xi})^ \frac{1}{3} = (-x)^{-\frac{1}{2}} .... (***)

Substituting the value of UxxU_{xx} and UyyU_{yy} into the equation, we have

Uxx+xUyy=(UηUξ)32(x)12U_{xx} + xU_{yy} = (U_{\eta} - U_{\xi}) \frac{3}{2}(-x)^{-\frac{1}{2}}

And substituting (***), we have

Uxx+xUyy=3(UηUξ)[2(ηξ)]13U_{xx}+xU_{yy} = \dfrac{3(U_{\eta} - U_{\xi})}{[2(\eta - \xi)]^ \frac{1}{3}}



















Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS