Comparing the given DE with
a U x x + 2 b U x y + c U y y aU_{xx} + 2bU_{xy} + cU_{yy} a U xx + 2 b U x y + c U yy
We have that
a = 1 , b = 0 , c = x a = 1, b=0, c = x a = 1 , b = 0 , c = x
But
d y d x = b ± b 2 − a c a \dfrac{dy}{dx} = \dfrac{b \pm \sqrt{b^2-ac}}{a} d x d y = a b ± b 2 − a c
In this case,
d y d x = ± − x \dfrac{dy}{dx} = \pm \sqrt{-x} d x d y = ± − x
This value will be a real number since we are considering the region x < 0
d y = ± ( − x ) 1 2 d x y = ± 2 ( − x ) 3 2 3 + c dy = \pm (-x)^\frac{1}{2}dx \\ y = \pm \dfrac{ 2(-x)^\frac{3}{2}}{3} + c d y = ± ( − x ) 2 1 d x y = ± 3 2 ( − x ) 2 3 + c
Set
ξ = 3 y − 2 ( − x ) 3 2 . . . . . . . ( ∗ ) \xi = 3y -2 (-x)^\frac{3}{2} ....... (*) ξ = 3 y − 2 ( − x ) 2 3 ....... ( ∗ )
And
η = 3 y + 2 ( − x ) 3 2 . . . . . . ( ∗ ∗ ) \eta = 3y + 2 (-x)^\frac{3}{2}...... (**) η = 3 y + 2 ( − x ) 2 3 ...... ( ∗ ∗ )
ξ x = − 3 ( − x ) 1 2 η x = 3 ( − x ) 1 2 \xi_x = -3(-x)^{\frac{1}{2}} \\
\eta_x = 3(-x)^{\frac{1}{2}} ξ x = − 3 ( − x ) 2 1 η x = 3 ( − x ) 2 1
ξ y = 3 η y = 3 \xi_y = 3 \\ \eta_y = 3 ξ y = 3 η y = 3
ξ x x = − 3 2 ( − x ) − 1 2 η x x = 3 2 ( − x ) − 1 2 \xi_{xx} =- \frac{3}{2}(-x)^{-\frac{1}{2}} \\
\eta_{xx}= \frac{3}{2}(-x)^{-\frac{1}{2}} ξ xx = − 2 3 ( − x ) − 2 1 η xx = 2 3 ( − x ) − 2 1
ξ y y = η y y = 0 \xi_{yy}= \eta_{yy} = 0 ξ yy = η yy = 0
So we have that
U x = U ξ ξ x + U η η x = − 3 ( − x ) 1 2 U ξ + 3 ( − x ) 1 2 U η U_x = U_{\xi} \xi_x + U_{\eta} \eta_{x} = -3(-x)^{\frac{1}{2}} U_{\xi} + 3(-x)^{\frac{1}{2}} U_{\eta} U x = U ξ ξ x + U η η x = − 3 ( − x ) 2 1 U ξ + 3 ( − x ) 2 1 U η
U x x = − 3 2 ( − x ) − 1 2 U ξ − 9 x U ξ ξ + 3 2 ( − x ) − 1 2 U η − 9 x U η η U_{xx} = -\frac{3}{2}(-x)^{-\frac{1}{2}} U_{\xi}-9x U _{\xi \xi} + \frac{3}{2}(-x)^{-\frac{1}{2}} U_{\eta}-9x U _{\eta \eta} U xx = − 2 3 ( − x ) − 2 1 U ξ − 9 x U ξξ + 2 3 ( − x ) − 2 1 U η − 9 x U ηη
U y = U ξ ξ y + U η η y = 3 U ξ + 3 U η U_y = U_{\xi} \xi_y + U_{\eta} \eta_{y} = 3 U_{\xi} + 3 U_{\eta} U y = U ξ ξ y + U η η y = 3 U ξ + 3 U η
U y y = 9 U ξ ξ + 3 U η η U_{yy} = 9U_{\xi \xi} + 3 U_{\eta \eta} U yy = 9 U ξξ + 3 U ηη
From (*) and (**), we have that
η − ξ = 4 ( − x ) 3 2 ( 4 η − ξ ) 1 3 = ( − x ) − 1 2 . . . . ( ∗ ∗ ∗ ) \eta - \xi = 4 (-x)^{\frac{3}{2}} \\ (\dfrac{4}{\eta - \xi})^ \frac{1}{3} = (-x)^{-\frac{1}{2}} .... (***) η − ξ = 4 ( − x ) 2 3 ( η − ξ 4 ) 3 1 = ( − x ) − 2 1 .... ( ∗ ∗ ∗ )
Substituting the value of U x x U_{xx} U xx and U y y U_{yy} U yy into the equation, we have
U x x + x U y y = ( U η − U ξ ) 3 2 ( − x ) − 1 2 U_{xx} + xU_{yy} = (U_{\eta} - U_{\xi}) \frac{3}{2}(-x)^{-\frac{1}{2}} U xx + x U yy = ( U η − U ξ ) 2 3 ( − x ) − 2 1
And substituting (***), we have
U x x + x U y y = 3 ( U η − U ξ ) [ 2 ( η − ξ ) ] 1 3 U_{xx}+xU_{yy} = \dfrac{3(U_{\eta} - U_{\xi})}{[2(\eta - \xi)]^ \frac{1}{3}} U xx + x U yy = [ 2 ( η − ξ ) ] 3 1 3 ( U η − U ξ )
Comments