Comparing the given DE with
aUxx+2bUxy+cUyy
We have that
a=1,b=0,c=x
But
dxdy=ab±b2−ac
In this case,
dxdy=±−x
This value will be a real number since we are considering the region x < 0
dy=±(−x)21dxy=±32(−x)23+c
Set
ξ=3y−2(−x)23.......(∗)
And
η=3y+2(−x)23......(∗∗)
ξx=−3(−x)21ηx=3(−x)21
ξy=3ηy=3
ξxx=−23(−x)−21ηxx=23(−x)−21
ξyy=ηyy=0
So we have that
Ux=Uξξx+Uηηx=−3(−x)21Uξ+3(−x)21Uη
Uxx=−23(−x)−21Uξ−9xUξξ+23(−x)−21Uη−9xUηη
Uy=Uξξy+Uηηy=3Uξ+3Uη
Uyy=9Uξξ+3Uηη
From (*) and (**), we have that
η−ξ=4(−x)23(η−ξ4)31=(−x)−21....(∗∗∗)
Substituting the value of Uxx and Uyy into the equation, we have
Uxx+xUyy=(Uη−Uξ)23(−x)−21
And substituting (***), we have
Uxx+xUyy=[2(η−ξ)]313(Uη−Uξ)
Comments