e 3 x ( p − 1 ) + p 3 e 2 y = 0 e^{3x}(p-1)+p^3e^{2y}=0 e 3 x ( p − 1 ) + p 3 e 2 y = 0
e y ( 1 − p ) = p 3 e 3 ( y − x ) e^y(1-p)=p^3e^{3(y-x)} e y ( 1 − p ) = p 3 e 3 ( y − x )
Use the substitution X = e x , Y = e y X=e^x, Y=e^y X = e x , Y = e y
d X = e x d x , d Y = e y d y dX=e^xdx, dY=e^y dy d X = e x d x , d Y = e y d y
d y d x = e x e y ⋅ d Y d X = > p = X Y ⋅ d Y d X \dfrac{dy}{dx}=\dfrac{e^x}{e^y}\cdot\dfrac{dY}{dX}=>p=\dfrac{X}{Y}\cdot\dfrac{dY}{dX} d x d y = e y e x ⋅ d X d Y => p = Y X ⋅ d X d Y
Y ( 1 − X Y ⋅ d Y d X ) = ( X Y ⋅ d Y d X ⋅ Y X ) 3 Y(1-\dfrac{X}{Y}\cdot\dfrac{dY}{dX})=(\dfrac{X}{Y}\cdot\dfrac{dY}{dX}\cdot\dfrac{Y}{X})^3 Y ( 1 − Y X ⋅ d X d Y ) = ( Y X ⋅ d X d Y ⋅ X Y ) 3
Y − X d Y d X = ( d Y d X ) 3 Y-X\dfrac{dY}{dX}=(\dfrac{dY}{dX})^3 Y − X d X d Y = ( d X d Y ) 3 The Clairaut equation
Y = X P + P 3 , P = d Y d X Y=XP+P^3, P=\dfrac{dY}{dX} Y = XP + P 3 , P = d X d Y Differentiating in X , X, X , we have
Y = X P + P 3 Y=XP+P^3 Y = XP + P 3
d Y = X d P + P d X + 3 P 2 d P dY=XdP+PdX+3P^2dP d Y = X d P + P d X + 3 P 2 d P Replace d Y dY d Y with P d X PdX P d X to obtain:
P d X = X d P + P d X + 3 P 2 d P PdX=XdP+PdX+3P^2dP P d X = X d P + P d X + 3 P 2 d P
d P ( X + 3 P 2 ) = 0 dP(X+3P^2)=0 d P ( X + 3 P 2 ) = 0 By equating the first factor to zero, we have
d P = 0 = > P = C dP=0=>P=C d P = 0 => P = C Now we substitute this into the differential equation.
The general solution is given by
Y = C X + C 3 , C is arbitrary constant Y=CX+C^3, C\text{ is arbitrary constant} Y = CX + C 3 , C is arbitrary constant
By equating the second term to zero we find that
X + 3 P 2 = 0 = > X = − 3 P 2 X+3P^2=0=>X=-3P^2 X + 3 P 2 = 0 => X = − 3 P 2 This gives us the singular solution of the differential equation in parametric form:
X = − 3 P 2 X=-3P^2 X = − 3 P 2
Y = X P + P 3 Y=XP+P^3 Y = XP + P 3 By eliminating P P P from this system, we get the equation of the integral curve:
P = ± − X 3 , Y = ± 2 3 X − X 3 P=\pm\sqrt{\dfrac{-X}{3}}, Y=\pm\dfrac{2}{3}X\sqrt{\dfrac{-X}{3}} P = ± 3 − X , Y = ± 3 2 X 3 − X Since X = e x , Y = e y , X=e^x, Y=e^y, X = e x , Y = e y , then the singular solution of the differential equation does not exist.
The general solution is given by
e y = C e x + C 3 , C is arbitrary constant e^y=Ce^x+C^3, C\text{ is arbitrary constant} e y = C e x + C 3 , C is arbitrary constant
Comments