Question #211200

singular and general solution 

e^3x(p-1)+p^3e^2y=0;X=e^x ,Y=e^y by substitution


1
Expert's answer
2021-06-28T16:29:02-0400
e3x(p1)+p3e2y=0e^{3x}(p-1)+p^3e^{2y}=0

ey(1p)=p3e3(yx)e^y(1-p)=p^3e^{3(y-x)}

Use the substitution X=ex,Y=eyX=e^x, Y=e^y


dX=exdx,dY=eydydX=e^xdx, dY=e^y dy

dydx=exeydYdX=>p=XYdYdX\dfrac{dy}{dx}=\dfrac{e^x}{e^y}\cdot\dfrac{dY}{dX}=>p=\dfrac{X}{Y}\cdot\dfrac{dY}{dX}

Y(1XYdYdX)=(XYdYdXYX)3Y(1-\dfrac{X}{Y}\cdot\dfrac{dY}{dX})=(\dfrac{X}{Y}\cdot\dfrac{dY}{dX}\cdot\dfrac{Y}{X})^3

YXdYdX=(dYdX)3Y-X\dfrac{dY}{dX}=(\dfrac{dY}{dX})^3

The Clairaut equation 

Y=XP+P3,P=dYdXY=XP+P^3, P=\dfrac{dY}{dX}

Differentiating in X,X, we have


Y=XP+P3Y=XP+P^3

dY=XdP+PdX+3P2dPdY=XdP+PdX+3P^2dP

Replace dYdY with PdXPdX to obtain:


PdX=XdP+PdX+3P2dPPdX=XdP+PdX+3P^2dP

dP(X+3P2)=0dP(X+3P^2)=0

By equating the first factor to zero, we have


dP=0=>P=CdP=0=>P=C

Now we substitute this into the differential equation.

The general solution is given by


Y=CX+C3,C is arbitrary constantY=CX+C^3, C\text{ is arbitrary constant}

By equating the second term to zero we find that


X+3P2=0=>X=3P2X+3P^2=0=>X=-3P^2

This gives us the singular solution of the differential equation in parametric form:


X=3P2X=-3P^2

Y=XP+P3Y=XP+P^3

By eliminating PP from this system, we get the equation of the integral curve:


P=±X3,Y=±23XX3P=\pm\sqrt{\dfrac{-X}{3}}, Y=\pm\dfrac{2}{3}X\sqrt{\dfrac{-X}{3}}

Since X=ex,Y=ey,X=e^x, Y=e^y, then the singular solution of the differential equation does not exist.


The general solution is given by


ey=Cex+C3,C is arbitrary constante^y=Ce^x+C^3, C\text{ is arbitrary constant}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS