Question #211150

Solve the following equations by the use of the operator D


1. D²y -2Dy + y= sinx +x²


2.D²y -6Dy +6y= e^3x + e^-3x


1
Expert's answer
2021-06-28T16:53:10-0400

1. Let us solve the equation D2y2Dy+y=sinx+x2.D^2y -2Dy + y=\sin x +x^2. Its characteristic equation k22k+1=0k^2-2k+1=0 is equivalent to (k1)2=0,(k-1)^2=0, and hence has the solutions k1=k2=1.k_1=k_2=1. It follows that the general solution is of the form y=(C1+C2x)ex+yp,y=(C_1+C_2x)e^x+y_p, where yp=asinx+bcosx+cx2+dx+e.y_p=a\sin x+b\cos x+cx^2+dx+e. It follows that Dyp=acosxbsinx+2cx+dDy_p=a\cos x-b\sin x+2cx+d and D2yp=asinxbcosx+2c.D^2y_p=-a\sin x-b\cos x+2c. We have the equality asinxbcosx+2c2(acosxbsinx+2cx+d)+asinx+bcosx+cx2+dx+e=sinx+x2.-a\sin x-b\cos x+2c-2(a\cos x-b\sin x+2cx+d)+a\sin x+b\cos x+cx^2+dx+e=\sin x +x^2.It is equivalent to 2acosx+2bsinx+cx2+(d4c)x+e+2c2d=sinx+x2.-2a\cos x+2b\sin x+cx^2+(d-4c)x+e+2c-2d=\sin x +x^2. It follows that 2a=0, 2b=1, c=1, d2c=0, e+2c2d=0.-2a=0,\ 2b=1,\ c=1,\ d-2c=0,\ e+2c-2d=0. Therefore, a=0, b=12, c=1, d=2, e=2.a=0,\ b=\frac{1}{2},\ c=1,\ d=2,\ e=2. We conclude that the general solution is the following:


y=(C1+C2x)ex+12cosx+x2+2x+2.y=(C_1+C_2x)e^x+\frac{1}{2}\cos x+x^2+2x+2.



2. Let us solve the equation D2y6Dy+6y=e3x+e3x.D^2y -6Dy +6y= e^{3x} + e^{-3x}. Its characteristic equation k26k+6=0k^2-6k+6=0 is equivalent to (k3)2=3,(k-3)^2=3, and hence has the solutions k1=3+3k_1=3+\sqrt{3}

and k2=33.k_2=3-\sqrt{3}. It follows that the general solution is of the form y=C1e(3+3)x+C2e(33)x+yp,y=C_1e^{(3+\sqrt{3})x}+C_2e^{(3-\sqrt{3})x}+y_p, where yp=ae3x+be3x.y_p=a e^{3x} + be^{-3x}. Therefore, Dyp=3ae3x3be3xDy_p=3a e^{3x} -3be^{-3x} and D2yp=9ae3x+9be3x.D^2y_p=9a e^{3x} + 9be^{-3x}. We get the equality 9ae3x+9be3x6(3ae3x3be3x)+6(ae3x+be3x)=e3x+e3x.9a e^{3x} + 9be^{-3x}-6(3a e^{3x} -3be^{-3x})+6(a e^{3x} +be^{-3x})=e^{3x} +e^{-3x}. It is equivalent to 3ae3x+33be3x=e3x+e3x.-3a e^{3x} + 33be^{-3x}=e^{3x} +e^{-3x}. It follows that 3a=33b=1,-3a=33b=1, and thus a=13, b=133.a=-\frac{1}{3},\ b=\frac{1}{33}. We conclude that the general solution is the following:


y=C1e(3+3)x+C2e(33)x13e3x+133e3x.y=C_1e^{(3+\sqrt{3})x}+C_2e^{(3-\sqrt{3})x}-\frac{1}{3}e^{3x}+\frac{1}{33}e^{-3x}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS