f ′ ( x ) = 6 x 2 + 2 c x + 2 f'(x)=6x^2+2cx+2 f ′ ( x ) = 6 x 2 + 2 c x + 2 Find the critical number(s)
f ′ ( x ) = 0 = > 6 x 2 + 2 c x + 2 = 0 f'(x)=0=>6x^2+2cx+2=0 f ′ ( x ) = 0 => 6 x 2 + 2 c x + 2 = 0
3 x 2 + c x + 1 = 0 3x^2+cx+1=0 3 x 2 + c x + 1 = 0 x = − c ± c 2 − 12 6 x=\dfrac{-c\pm\sqrt{c^2-12}}{6} x = 6 − c ± c 2 − 12 We consider x ∈ R x\in \R x ∈ R
c 2 − 12 ≥ 0 = > c ≤ − 12 o r c ≥ 12 c^2-12\ge0=>c\le-\sqrt{12}\ or\ c\ge\sqrt{12} c 2 − 12 ≥ 0 => c ≤ − 12 or c ≥ 12 In this case
x ≠ 0 , c x 2 = − 3 x 3 − x x\not=0, cx^2=-3x^3-x x = 0 , c x 2 = − 3 x 3 − x Substitute
y = 2 x 3 − 3 x 3 − x + 2 x y = 2x^3-3x^3-x+2x y = 2 x 3 − 3 x 3 − x + 2 x
y = − x 3 + x y = -x^3+x y = − x 3 + x Then the minimum and maximum points of every curve in the family of polynomials f ( x ) = 2 x 3 + c x 2 + 2 x f(x)=2x^3+cx^2+2x f ( x ) = 2 x 3 + c x 2 + 2 x lie on the curve y = x − x 3 . y=x-x^3. y = x − x 3 .
x ≠ 0 , c ≤ − 12 x\not=0, c\le-\sqrt{12} x = 0 , c ≤ − 12 or c ≥ 12 . c\ge\sqrt{12}. c ≥ 12 .
Comments