Answer to Question #300353 in Calculus for Dhanush

Question #300353

Show that Sigma infinity n=1 ( -1)^n+1 5÷7n+2 is conditionally convergent

1
Expert's answer
2022-02-22T16:18:37-0500

Solution:

n=1(1)n+157n+2=5n=1(1)n+117n+2=5n=1(1)n(1)17n+2=5(n=1(1)n17n+2)=5(converges)  [using Alternating series test]=converges\sum _{n=1}^{\infty \:}\left(-1\right)^{n+1}\frac{5}{7n+2} \\=5\cdot \sum _{n=1}^{\infty \:}\left(-1\right)^{n+1}\frac{1}{7n+2} \\=5\cdot \sum _{n=1}^{\infty \:}\left(-1\right)^n\left(-1\right)\frac{1}{7n+2} \\=5\left(-\sum _{n=1}^{\infty \:}\left(-1\right)^n\frac{1}{7n+2}\right) \\=5\left(-\mathrm{converges}\right)\ \ [\text{using Alternating series test}] \\=\mathrm{converges}

Here, an=17n+1a_n=\dfrac1{7n+1} which is positive and decreasing sequence.

Also, limnan=limn17n+1=0\lim_{n\rightarrow \infty}a_n=\lim_{n\rightarrow \infty}\dfrac1{7n+1}=0

Thus, by alternating series test n=1(1)nan or n=1(1)n+1an\sum _{n=1}^{\infty \:}\left(-1\right)^{n}a_n\ or\ \sum _{n=1}^{\infty \:}\left(-1\right)^{n+1}a_n converge.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment