i) Revenue function is
R ( x ) = x p ( x ) = x 3 + 10 x 2 + 1000 x R(x)=xp(x)=x^3+10x^2 +1000x R ( x ) = x p ( x ) = x 3 + 10 x 2 + 1000 x ii) The cost function is
C ( x ) = x c ( x ) = 22 x 3 + 36 x 2 + 100 x − 2 C(x)=xc(x)= 22x^3 +36x^2 +100x -2 C ( x ) = x c ( x ) = 22 x 3 + 36 x 2 + 100 x − 2 iii) The profit function is
P ( x ) = R ( x ) − C ( x ) P(x)=R(x)-C(x) P ( x ) = R ( x ) − C ( x )
= x 3 + 10 x 2 + 1000 x − ( 22 x 3 + 36 x 2 + 100 x − 2 ) =x^3+10x^2 +1000x-(22x^3 +36x^2 +100x -2) = x 3 + 10 x 2 + 1000 x − ( 22 x 3 + 36 x 2 + 100 x − 2 )
= − 21 x 3 − 26 x 2 + 900 x + 2 =-21x^3 -26x^2 +900x+2 = − 21 x 3 − 26 x 2 + 900 x + 2 iv)
Find the first derivative of profit with respect to x x x
P ′ ( x ) = − 63 x 2 − 52 x + 900 , x ≥ 0 P'(x)=-63x^2-52x+900, x\geq0 P ′ ( x ) = − 63 x 2 − 52 x + 900 , x ≥ 0 Find the critical number(s)
P ′ ( x ) = 0 = > − 63 x 2 − 52 x + 900 = 0 P'(x)=0=>-63x^2-52x+900=0 P ′ ( x ) = 0 => − 63 x 2 − 52 x + 900 = 0
D = ( − 52 ) 2 − 4 ( − 63 ) ( 900 ) = 229504 D=(-52)^2-4(-63)(900)=229504 D = ( − 52 ) 2 − 4 ( − 63 ) ( 900 ) = 229504
x = 52 ± 229504 2 ( − 63 ) = − 26 ± 4 3586 63 x=\dfrac{52\pm\sqrt{229504}}{2(-63)}=\dfrac{-26\pm4\sqrt{3586}}{63} x = 2 ( − 63 ) 52 ± 229504 = 63 − 26 ± 4 3586
x 1 = − 26 − 4 3586 63 x_1=\dfrac{-26-4\sqrt{3586}}{63} x 1 = 63 − 26 − 4 3586
x 2 = − 26 + 4 3586 63 x_2=\dfrac{-26+4\sqrt{3586}}{63} x 2 = 63 − 26 + 4 3586 Since x ≥ 0 , x\geq0, x ≥ 0 , we consider
x = − 26 + 4 3586 63 x=\dfrac{-26+4\sqrt{3586}}{63} x = 63 − 26 + 4 3586 If 0 < x < − 26 + 4 3586 63 , P ′ ( x ) > 0 , P ( x ) 0<x<\dfrac{-26+4\sqrt{3586}}{63}, P'(x)>0, P(x) 0 < x < 63 − 26 + 4 3586 , P ′ ( x ) > 0 , P ( x ) increases.
If x > − 26 + 4 3586 63 , P ′ ( x ) < 0 , P ( x ) x>\dfrac{-26+4\sqrt{3586}}{63}, P'(x)<0, P(x) x > 63 − 26 + 4 3586 , P ′ ( x ) < 0 , P ( x ) decreases.
− 26 + 4 3586 63 ≈ 3.39 \dfrac{-26+4\sqrt{3586}}{63}\approx3.39 63 − 26 + 4 3586 ≈ 3.39
P ( 3 ) = − 21 ( 3 ) 3 − 26 ( 3 ) 2 + 900 ( 3 ) + 2 = 1901 P(3)=-21(3)^3 -26(3)^2 +900(3)+2=1901 P ( 3 ) = − 21 ( 3 ) 3 − 26 ( 3 ) 2 + 900 ( 3 ) + 2 = 1901
P ( 4 ) = − 21 ( 4 ) 3 − 26 ( 4 ) 2 + 900 ( 4 ) + 2 = 1842 P(4)=-21(4)^3 -26(4)^2 +900(4)+2=1842 P ( 4 ) = − 21 ( 4 ) 3 − 26 ( 4 ) 2 + 900 ( 4 ) + 2 = 1842 The profit has the absolute maximum with value of $ 1901 \$1901 $1901 at x = 3 x=3 x = 3 units of output.
p ( 3 ) = ( 3 ) 2 + 10 ( 3 ) + 1000 = 1039 p(3)=(3)^2+10(3) +1000=1039 p ( 3 ) = ( 3 ) 2 + 10 ( 3 ) + 1000 = 1039 The price is $ 1039. \$1039. $1039.
v) The maximum profit is $ 1901. \$1901. $1901.
Comments