Answer to Question #283475 in Calculus for Ruchi

Question #283475

Find the second derivative of 3y^4+x^7=5x

1
Expert's answer
2021-12-31T08:55:03-0500

3y⁴+x⁷=5x

Differentiating with respect to x

12y³dydx+7x=5\frac{dy}{dx}+7x⁶ = 5

=> 12y³dydx\frac{dy}{dx} = 5 - 7x⁶

=> dydx\frac{dy}{dx} = 57x12y³\frac{5-7x⁶}{12y³} ••••••••(1)

Now 12y³dydx+7x=5\frac{dy}{dx}+7x⁶ = 5

Differentiating again with respect to x

12y³d²ydx²+36y²(dydx)212y³\frac{d²y}{dx²}+ 36y²{(\frac{dy}{dx})}^2 + 42x⁵ = 0

=> 2y³d²ydx²+6y²(dydx)22y³\frac{d²y}{dx²}+ 6y²{(\frac{dy}{dx})}^2 + 7x⁵ = 0

=>

2y³d²ydx²+6y²(57x12y³)2+7x=02y³\frac{d²y}{dx²}+ 6y²{(\frac{5-7x⁶}{12y³})}^2+7x⁵=0

=> 2y³d²ydx²=6y²(57x12y³)27x2y³\frac{d²y}{dx²}= -6y²{(\frac{5-7x⁶}{12y³})}^2-7x⁵

=> d²ydx²=6y²(57x12y³)27x2y³\frac{d²y}{dx²}= \frac{ -6y²{(\frac{5-7x⁶}{12y³})}^2-7x⁵}{2y³}

=> d²ydx²=6y²(57x12y³)2+7x2y³\frac{d²y}{dx²}=- \frac{ 6y²{(\frac{5-7x⁶}{12y³})}^2+7x⁵}{2y³}

=> d²ydx²=6y²((57x)²144y)+7x2y³\frac{d²y}{dx²}=- \frac{ 6y²{(\frac{(5-7x⁶)²}{144y⁶})}+7x⁵}{2y³}

=> d²ydx²=((57x)²24y)+7x2y³\frac{d²y}{dx²}=- \frac{ {(\frac{(5-7x⁶)²}{24y⁴})}+7x⁵}{2y³}

=> d²ydx²=(57x)²+168xy48y\frac{d²y}{dx²}=- \frac{ (5-7x⁶)²+168x⁵y⁴}{48y⁷}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment