Sample: Linear Algebra - Transformations

16)

(a)

Let f_1 , f_2 be continuous real-valued functions on [0,1]. Then linear combination

$$c_1 f_1 + c_2 f_2$$

is also continuous real-valued function on [0,1]. So V is the linear subspace of $\mathfrak{F}([0,1])$.

(b)

Let $f_1, f_2 \in W$. Then

$$\int_0^1 f_1(t)dt = 0$$

$$\int_0^1 f_2(t)dt = 0$$

Then

$$\int_0^1 c_1 f_1(t) + c_2 f_2(t) dt = c_1 \int_0^1 f_1(t) dt + c_2 \int_0^1 f_2(t) dt = 0$$

Thus

$$c_1f_1 + c_2f_2 \in W$$

So W is a subspace of V.

17)

f(x) is the polynomial of degree n. Thus f'(x) is a polynomial f degree n-1, f''(x) is a polynomial of degree $n-2, ..., f^{(k)}(x)$ is a polynomial of degree n-k, $f^{(n)}(x)$ is a constant. Since all polynomials $f, f', ..., f^{(n)}$ have different degree, they are linearly independent. Since they have consecutive degrees starting from 0,

 $\{f, f', \dots, f^{(n)}\}$ form a basis of $P_n(\mathbb{R})$. So for every $g(x) \in P_n(\mathbb{R})$ exists c_1, \dots, c_n such that

$$g(x) = c_1 f(x) + c_2 f'(x) + \dots + c_n f^{(n)}(x)$$

18)

- a) Is not linear transformation
- b) Is not linear transformation
- c) Is not linear transformation
- d) It is linear transformation. Matrix:

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & \pi^2 \end{pmatrix}$$

e) Is not linear transformation

19)

Suppose vectors $x_1, ..., x_r, v_1, ..., v_s$ are not linearly independent. Then there exists their non-trivial linear combination that equals to 0:

$$c_1x_1+\cdots+c_rx_r+d_1v_1+\cdots+d_sv_s=0$$

Since x_i are independent this linear combination contains at least one none-zero term d_i .

Let's apply operator *T* to this equality.

$$T(c_1x_1 + \dots + c_rx_r + d_1v_1 + \dots + d_sv_s) = T(0)$$

Since *T* is linear we have:

$$c_1 T(x_1) + \dots + c_r T(x_r) + d_1 T(v_1) + \dots + d_s T(v_s) = 0$$

Since $x_1, ..., x_r \in N(T)$

$$T(x_i) = 0$$

So

$$d_1T(v_1) + \dots + d_sT(v_s) = 0$$

We got non-trivial linear combination of vectors $T(v_i)$ that equals to 0. This contradicts to independence of vectors $\{T(v_i)\}$.

So vectors $x_1, ..., x_r, v_1, ..., v_s$ are linearly independent.

20)

Let

$$T(v) = T((v_1, v_2, v_3)) = (0, v_1, v_2)$$

T is linear transformation with matrix

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Then

$$T\left(T\left(T\left((v_1,v_2,v_3)\right)\right)\right) = T\left(T\left((0,v_1,v_2)\right)\right) = T\left((0,0,v_1)\right) = (0,0,0) = 0$$

So we have T(T(T(v))) = 0 for all $v \in \mathbb{R}^3$. But

$$T(T((1,1,1))) = T((0,1,1)) = (0,0,1) \neq 0$$

21)

$$A_{ij} = y_i x_j$$

Matrix A has rows that are multiples of $(x_1, ..., x_n)$ with coefficients $y_1, ..., y_m$. Thus rank of matrix A equals to 1. Nullity of L_A equals to n-1.

22)

Kernel of operator *T* is a plane. Equation of the kernel:

$$9x - 9y + z = 0$$

Let's take

$$T = \begin{pmatrix} 9 & -9 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Kernel of T equals to

$$span\left(\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\9 \end{pmatrix} \right\} \right)$$

23)

(a)

$$T(f) = (x+1)f' + f$$

Let's check whether operator is linear:

$$T(c_1f_1 + c_2f_2) = (x+1)(c_1f_1 + c_2f_2)' + (c_1f_1 + c_2f_2)$$

= $c_1((x+1)f_1' + f_1) + c_2((x+1)f_2' + f_2) = c_1T(f_1) + c_2T(f_2)$

So *T* is linear.

(b)

Let's find explicit action of *T* on polynomials:

$$T(c_0 + c_1 x) = (x+1)c_1 + c_0 + c_1 x = c_0 + c_1 + 2c_1 x$$

Matrix representation of *T*:

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

24)

Matrix representation of T:

$$T = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

Nullity of the operator:

$$v_2 = v_3 = \dots = v_n = 0$$

So

$$N(T) = span \left\{ \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} \right\} \right\}$$

$$T^k(v_1,\dots,v_n)=(v_{1+k},v_{2+k},\dots,v_n,0,0,\dots,0)$$

$$N(T^{k}) = span \left\{ \begin{cases} \begin{pmatrix} 1\\0\\0\\...\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\...\\0 \end{pmatrix}, ..., \begin{pmatrix} 0\\...\\1\\...\\0 \end{pmatrix} \right\} \right\}$$